Stagnation in indirect drive implosions: an updated, updated picture

Brian K. Spears
LLNL ICF program
June 21, 2016
September 13, 2016

We'll review the laser indirect drive (LID) stagnation picture, hypotheses, and actions

Draft, August 12, 201

Current physical picture of the stagnation process and state in MDD, LDD and LID

Radha Bahukutumbi¹, Jeremy Chittenden², Johan Frenje² (chair), Joseph Kilkenny³, Patrick Knapp², Jim Knauer², Roberto Mancini³, Thomas Murphy³, Exaveb Patel³, Kyle Peterson⁵, Sean Regan¹ (co-chair), Andrew Schmitt⁴, Andrei Simakov⁵, Brian Spears³, Paul Springer³ and Sasha Velikovich⁵

- ²Laboratory for Laser Energetics, University of Rochester ²Massachusets Institute of Technology
- ³Lawrence Livermore National Laboratory
- Sandia National Laboratories
- 'Sandia National Laboratories ^SLos Alamos National Laboratory
- ⁶Naval Research Laboratory
- ⁷Imperial College, London
- *Unicersity of Nevada, Reno *General Atomics

Submitted to National Nuclear Security Administration September xxx, 2016

4. 'Stagnation' in Laser Indirect Drive (LID)

4.1 Introduction

Over seventy five cryogenic DT implosions have been performed at the NIF, spanning a number of capsule and hohlraum designs and laser pulse shapes (see Figure 4.1). This section focuses on the high-foot design [4.1], since it is the highest performing design to date, and the most studied. Most high-foot implosions (CH HF) were performed in a standard size Au or DU hohlraum with a high-gas-fill density (1.6 mg/cm³). Two experiments tested, an adiabat-shaped variant of the high-foot pulse (CH HF AS) in the same hohlraum demonstrating higher fuel compression as predicted. More recent experiments have

We have a picture of the stagnated implosion from experimental data compared to simulation

- Implosions in high-fill hohlraums are asymmetric (4.2.1)
- Engineering features are visible perturbations (4.2.1 b*)
- Hot spot ion temperatures are higher than expected, and DD/DT differential too large (4.2.2)
- We observe no mix in the high foot implosion platform (4.2.3)
- Burn width, both x-ray and nuclear, longer than simulation (4.2.4)
- Hot spot pressures are typically lower than simulations (4.2.5)
- DSR and fNADS measurements suggest the cold shell is perturbed and low rhoR (4.2.6*)

Implosions in high-fill hohlraums are asymmetric (4.2.1)

High foot hot spot x-ray images

Co-registered x-ray/neutron images

- X-ray shape is difficult to control in high-fill and vacuum hohlraums
- Asymmetric x-ray, neutron images
- Engineering features (tent, fill tube) may contribute

Engineering features are visible perturbations (4.2.1 b*)

Hot spot ion temperatures are higher than expected, and DD/DT differential too large (4.2.2)

Hot spot ion temperatures are higher than expected, and DD/DT differential too large (4.2.2)

Gap between DD and DT temperatures is larger than predicted by simple theories or modestly perturbed simulations

We observe no mix in the high foot implosion platform (4.2.3)

- Mix increases the x-ray production for fixed neutron production
- Observed in low foot experiments
- Not detected in high foot experiments

Burn width, both x-ray and nuclear, are longer than simulation (4.2.4)

- X-ray and nuclear burn widths trend similarly
- Both widths longer than simulations by 10s ps
- 3D asymmetries in increase widths in simulations.
- X-ray/nuclear delta (~ 25 ps) slightly larger than in simulations (~ 10 ps)
- Crucial for pressure estimates

Hot spot pressures are typically lower than simulations (4.2.5)

- burn-averaged hot-spot pressure from 1D isobaric model
 - $-Y_n$, T_i , x-ray and neutron emission radii, and burn width
- Pressure increases with reduced coast time, increased velocity
- Falls for most strongly driven implosions -- cliff

Omitted figure

DSR and fNADS measurements suggest the cold shell is perturbed and low ρ R (4.2.6*)

- DSR provides an average measure of fuel rhoR – typically 20% below simulated
- fNADS shows structure sometimes correlated with the filltube

We have developed hypotheses based on our stagnation picture (observations and theory)

- Radiation drive asymmetry is a major degradation mechanism
- The capsule support tent is a significant degradation mechanism
- The fill tube is damaging the hot spot and the cold shell
- Hot spot flows are elevating the ion temperature (insight here)
- The D:T ratio in the fuel is closer to 60:40 (insight here)

- Kinetic effects (species separation, ion equilibration) are affecting yields and temperatures
- Oxygen non-uniformities may seed instability growth
- Hot electron preheat is lowering DSR

Hypothesis 1: Radiation drive asymmetry is a major degradation mechanism

To produce a hot spot like this, the surrounding implosion must be quite distorted.

Time dependent asymmetry is hypothesized to be the limiting factor in current performance

from high-foot implosion N140520 (D. Clark)

Hypothesis 2: The capsule support tent is a significant degradation mechanism

Hypothesis 3: The fill tube is damaging the hot spot and the cold shell

- Emitting jets originate from fill tube direction – looks harmful
- FNADS perturbations localized near fill tube

Hypothesis 6: Hot spot flows are elevating the ion temperature

Hypothesis 8: The D:T ratio in the fuel is closer to 60:40

DT temperature in blue is apparent temperature on equatorial LOS (often lowest apparent temperature)

- 1D models with 60:40 fuel explain yield ratios
- Asymmetric implosions with 50:50 explain yield ratios AND Tion trends

We're full of hypotheses

- Hypothesis 7: Reduced thermal conductivity (relative to simulation) increases the ion temperature
- Hypothesis 9: Kinetic effects (species separation, ion equilibration) are affecting yields and temperatures

 Can be explained without appealing to enhanced or modified physics (vanilla code)

We are making progress on developing our stagnation picture and hypotheses

 New measurements are adding to our observables

 New simulations and thinking are helping us to evaluate hypotheses – especially in combination

 Measurements, simulations, and experiments are planned to test our hypotheses – more from Prav, next.

