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We’ll review the laser indirect drive (LID) 
stagnation picture, hypotheses, and actions
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We have a picture of the stagnated implosion from 
experimental data compared to simulation

 Implosions in high-fill hohlraums are asymmetric (4.2.1)
 Engineering features are visible perturbations (4.2.1 b*)
 Hot spot ion temperatures are higher than expected, and DD/DT 

differential too large (4.2.2)
 We observe no mix in the high foot implosion platform (4.2.3)
 Burn width, both x-ray and nuclear, longer than simulation (4.2.4)
 Hot spot pressures are typically lower than simulations (4.2.5)
 DSR and fNADS measurements suggest the cold shell is perturbed 

and low rhoR (4.2.6*)
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Implosions in high-fill hohlraums are 
asymmetric (4.2.1)

 X-ray shape is difficult to control in 
high-fill and vacuum hohlraums

 Asymmetric x-ray, neutron images

 Engineering features (tent, fill tube) 
may contribute

new

High foot hot spot x-ray images

Co-registered x-ray/neutron images
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Engineering features are visible perturbations 
(4.2.1 b*)

support
“tent” 

In-flight
tent features 

Potential tent 
features

Filltube jet Tent scarring
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Hot spot ion temperatures are higher than expected, 
and DD/DT differential too large (4.2.2)

According to 2D simulations
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No-flow Tion

Measured Tion
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Hot spot ion temperatures are higher than expected, 
and DD/DT differential too large (4.2.2)

Gap between DD and DT temperatures is larger than predicted by 
simple theories or modestly perturbed simulations 
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We observe no mix in the high foot implosion 
platform (4.2.3)

 Mix increases the x-ray 
production for fixed neutron 
production

 Observed in low foot 
experiments

 Not detected in high foot 
experiments
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Burn width, both x-ray and nuclear, are longer 
than simulation (4.2.4)
 X-ray and nuclear burn 

widths trend similarly

 Both widths longer than 
simulations by 10s ps

 3D asymmetries in increase 
widths in simulations.

 X-ray/nuclear delta (~ 25 ps) 
slightly larger than in 
simulations (~ 10 ps)

 Crucial for pressure estimates
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Hot spot pressures are typically lower than 
simulations (4.2.5)

 burn-averaged hot-spot 
pressure from 1D isobaric 
model
— Yn, Ti, x-ray and neutron 

emission radii, and burn width

 Pressure increases with 
reduced coast time, 
increased velocity

 Falls for most strongly driven 
implosions -- cliff 

Omitted figure
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DSR and fNADS measurements suggest the cold 
shell is perturbed and low ρR (4.2.6*)
 DSR provides an average measure of fuel 

rhoR – typically 20% below simulated

 fNADS shows structure – sometimes 
correlated with the filltube
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We have developed hypotheses based on our 
stagnation picture (observations and theory)

 Radiation drive asymmetry is a major degradation mechanism
 The capsule support tent is a significant degradation mechanism
 The fill tube is damaging the hot spot and the cold shell
 Hot spot flows are elevating the ion temperature (insight here)
 The D:T ratio in the fuel is closer to 60:40 (insight here)

 Lower-than-predicted conductivity increases the ion temperature
 Kinetic effects (species separation, ion equilibration) are affecting 

yields and temperatures

 Oxygen non-uniformities may seed instability growth 
 Hot electron preheat is lowering DSR

new
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Hypothesis 1: Radiation drive asymmetry is a 
major degradation mechanism

Low mode asymmetry
P2 P4

Stagnation X-ray emission

often “pancaked”

To produce a hot spot like this, the surrounding 
implosion must be quite distorted.
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Time dependent asymmetry is hypothesized to 
be the limiting factor in current performance

Neutron Yield

from high-foot implosion N140520 (D. Clark)

1015

1016

1017

1018 10x 
reduction 
asymmetry 
alone

2x
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Hypothesis 2: The capsule support tent is a 
significant degradation mechanism

 fTent features 
leak pressure

Tent features 
quench hot spot

May 
confound P2, 
P4 diagnosis

support
“tent” 

In-flight
tent features 

Potential tent 
features
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Hypothesis 3: The fill tube is damaging the hot 
spot and the cold shell

 Emitting jets originate from fill 
tube direction – looks harmful

 FNADS perturbations localized 
near fill tube
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Hypothesis 6: Hot spot flows are elevating the 
ion temperature

T (keV) T (keV)

T D
D
/T

D
T

T D
D
/T

D
T

Simulated polar Tion Simulated equatorial Tion

Simulation database of 
asymmetric implosions
• black is thermal T
• Blue is apparent T

• “3D-ish” pole shows 
trend similar to 
experiment

• Large temperature 
shifts from non-P1 
flows (P2)

• But experiments 
show more isotropy –
multiple jets (10s)

Experiments (Gatu Johnson)
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Hypothesis 8: The D:T ratio in the fuel is closer 
to 60:40

 1D models with 60:40 fuel explain yield ratios

 Asymmetric implosions with 50:50 explain yield ratios AND Tion trends

DT temperature in blue is apparent
temperature on equatorial LOS
(often lowest apparent temperature)
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We’re full of hypotheses

 Hypothesis 7: Reduced thermal conductivity (relative 
to simulation) increases the ion temperature 

 Hypothesis 9: Kinetic effects (species separation, ion 
equilibration) are affecting yields and temperatures

 Can be explained without appealing to enhanced or 
modified physics (vanilla code)
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We are making progress on developing our 
stagnation picture and hypotheses

 New measurements are adding 
to our observables

 New simulations and thinking are helping 
us to evaluate hypotheses – especially in 
combination

 Measurements, simulations, and experiments are planned to test our 
hypotheses – more from Prav, next.
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